翻訳と辞書
Words near each other
・ Lucas Peressini
・ Lucas Piasentin
・ Lucas Piazon
・ Lucas Pierre Santos Oliveira
・ Lucas Pittinari
・ Lucas Point
・ Lucas Pointud
・ Lucas Ponce
・ Lucas Porcar
・ Lucas Possignolo
・ Lucas Pouille
・ Lucas Prado
・ Lucas Prata
・ Lucas Pratto
・ Lucas primality test
Lucas pseudoprime
・ Lucas Puig
・ Lucas Pusineri
・ Lucas Pérez Martínez
・ Lucas Radebe
・ Lucas Rafael Bennazar Ortiz
・ Lucas Rastello
・ Lucas Rey
・ Lucas Rimoldi
・ Lucas Rincón Romero
・ Lucas Roberts
・ Lucas Roberts and Sami Brady
・ Lucas Rockwood
・ Lucas Rodríguez
・ Lucas Roggia


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Lucas pseudoprime : ウィキペディア英語版
Lucas pseudoprime
Lucas pseudoprimes and Fibonacci pseudoprimes are composite integers that pass certain tests which all primes and very few composite numbers pass: in this case, criteria relative to some Lucas sequence.
== Basic properties ==

Given integers ''P'' and ''Q'', where ''P'' > 0 and D=P^2-4Q,
let ''U''''k''(''P'', ''Q'') and ''V''''k''(''P'', ''Q'') be the corresponding Lucas sequences.
Let ''n'' be a positive integer and let \left(\tfrac\right) be the Jacobi symbol. We define
: \delta(n)=n-\left(\tfrac\right).
If ''n'' is a prime such that the greatest common divisor of ''n'' and ''Q'' (that is, GCD(''n, Q'')) is 1, then the following congruence condition holds (see page 1391 of
):
: \text (1) \text U_ \equiv 0 \pmod .
If this equation does ''not'' hold, then ''n'' is ''not'' prime.
If ''n'' is ''composite'', then this equation usually does ''not'' hold (see,〔 page 1392). These are the key facts that make Lucas sequences useful in primality testing.
Some good references are chapter 8 of the book by Bressoud and Wagon (with Mathematica code),〔
〕 pages 142-152 of the book by Crandall and Pomerance,〔
〕 and pages 53–74 of the book by Ribenboim
.〔


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Lucas pseudoprime」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.